Fuel Injection System Components

- Throttle Body
- Idle Speed Controller
- ECU
- Fuel Pump
- Ignition Coil
- Crank Position Sensor
- Roll Over Switch
- Temperature Manifold Air Pressure
- Throttle Position Sensor
- Injector
- Engine Coolant Temperature Sensor

EFI system components inspection
Fuel line inspection
Fuel flow inspection
Fuel pump
Fuel pump relay
Sensor circuit malfunction troubleshooting
Fault diagnosis
Integrated fault diagnosis program
Fault diagnosis note
Use diagnosis tool
Troubleshooting table
Comprehensive maintenance list
PRECAUTIONS IN SERVICING
When handling the Fuel Injection component parts or servicing the Fuel Injection system, observe the following points for the safety of the system.

GENERAL
Be sure to relieve the fuel pressure while the engine is OFF. Bending or twisting the control cables will impair smooth operation and could cause the cables to stick or bind, resulting in loss of vehicle control. Work in a well-ventilated area. Smoking or allowing flames or sparks in the work area or where gasoline is stored can cause a fire or explosion.

FUEL SYSTEM
• Do not apply commercially available carburetor cleaners to the inside of the throttle bore, which is coated with molybdenum.
• Do not snap the throttle valve from full open to full close after the throttle cable has been removed. It may cause incorrect idle operation.
• Seal the cylinder head intake ports with tape or a clean cloth to keep dirt and debris from entering the intake ports after the throttle body has been removed.
• Do not apply excessive force to the fuel pipe on the throttle body while removing or installing the throttle body.
• Do not damage the throttle body. It may cause incorrect throttle and idle valve synchronization.
• Prevent dirt and debris from entering the throttle bore, fuel tube and return tube, clean them using compressed air.
• The throttle body is factory pre-set. Do not disassemble in a way other than shown in this manual.
• Do not loosen or tighten the white painted bolts and screws of the throttle body. Loosening or tightening them can cause throttle and idle valve synchronization failure.
• Do not push the fuel pump base under the fuel tank when the fuel tank is stored.
• Always replace the packing when the fuel pump is removed.
• Fuel injection system location, see page 8.
• A faulty EFI system is often related to poorly connected or corroded connectors. Check those connections before proceeding.
• When disassembling the EFI parts, note the location of the O-rings. Replace them with new ones upon reassembly.
• Before disconnecting the fuel hose, release the fuel pressure.
• Always replace the clamp when the fuel hose is removed or loosened.
• Use a diagnosis tool for EFI system inspection.
CONNECTOR/COUPLER
• When connecting a connector, be sure to push it in until a click is felt.
• With a lock type coupler, be sure to release the lock when disconnecting, and push in fully to engage the lock when connecting.
• When disconnecting the coupler, be sure to hold the coupler body and do not pull the lead wires.
• Inspect each terminal on the connector/coupler for looseness or bending.
• Inspect each terminal for corrosion and contamination. The terminals must be clean and free of any foreign material, which could impede proper terminal contact.
• Inspect each lead wire circuit for poor connection by shaking it by hand lightly. If any abnormal condition is found, repair or replace.
• When taking measurements at electrical connectors using a tester probe, be sure to insert the probe from the wire harness side (backside) of the connector/coupler.
• When connecting meter probe from the terminal side of the coupler where (connection from harness side not being possible), use extra care not to force and cause the male terminal to bend or the female terminal to open. Connect the probe as shown to avoid opening of female terminal. Never push in the probe where male terminal is supposed to fit.
• Check the male connector for bend and female connector for excessive opening. Also check the coupler for locking (looseness), corrosion, dust, etc.

FUSE
• When a fuse blows, always investigate the cause to correct it and then replace the fuse.
• Do not use a fuse of a different capacity.
• Do not use wire or any other substitute for the fuse.

ECU/VARIOUS SENSORS
• Since each component is a high-precision part, great care should be taken not to apply any sharp impacts during removal and installation.
• Be careful not to touch the electrical terminals of the ECU. The static electricity from your body may damage this part.
• When disconnecting and connecting the ECU couplers, make sure to turn OFF the ignition switch, or electronic parts may get damaged.
• Battery connection in reverse polarity is strictly prohibited. Such a wrong connection will damage the components of the FI system instantly when reverse power is applied.
• Removing any battery terminal of a running engine is strictly prohibited. The moment such removal is made, damaging counter electromotive force will be applied to the ECU, which may result in serious damage.
• Before measuring voltage at each terminal, check to make sure that battery voltage is 11 V or higher. Terminal voltage check with a low voltage battery will lead to erroneous diagnosis.
• Never connect any tester (voltmeter, ohmmeter, or whatever) to the ECU when its coupler is disconnected. Otherwise, damage to the ECU may result.
• Never connect an ohmmeter to the ECU with its coupler connected. If attempted, damage to the ECU or sensors may result.
• Be sure to use a specified voltmeter/ohmmeter. Otherwise, accurate measurements may not be obtained and personal injury may result.

ELECTRICAL CIRCUIT INSPECTION PROCEDURE
While there are various methods for electrical circuit inspection, described here is a general method to check for open and short circuit using an ohmmeter and a voltmeter.

OPEN CIRCUIT CHECK
Possible causes for the open circuit are as follows.
As the cause can exist in the connector/coupler or terminal, they need to be checked carefully.
• Loose connection of connector/coupler.
• Poor contact of terminal (due to dirt, corrosion or rust, poor contact tension, entry of foreign object etc.)
• Wire harness being open
• Poor terminal-to-wire connection
• Disconnect the negative cable from the battery.
• Check each connector/coupler at both ends of the circuit being checked for loose connection. Also check for condition of the coupler lock if equipped.
• Using a test male terminal, check the female terminals of the circuit being checked for contact tension.
Check each terminal visually for poor contact (possibly caused by dirt, corrosion, rust, entry of foreign object, etc.). At the same time, check to make sure that each terminal is fully inserted in the coupler and locked.
If contact tension is not enough, rectify the contact to increase tension or replace.
The terminals must be clean and free of any foreign material, which could impede proper terminal contact.

• Using continuity inspect or voltage check procedure as described below, inspect the wire harness terminals for open circuit and poor connection. Locate abnormality, if any.
CONTINUITY CHECK

- Measure resistance across coupler B (between A and C in the figure).
- If no continuity is indicated (infinity or over limit), the circuit is open between terminals A and C.

- Disconnect the coupler B and measure resistance between couplers A and B.
- If no continuity is indicated, the circuit is open between couplers A and B. If continuity is indicated, there is an open circuit between couplers B’ and C or an abnormality in coupler B’ or coupler C.

VOLTAGE CHECK

- If voltage is supplied to the circuit being checked, voltage check can be used as circuit check.
- With all connectors/couplers connected and voltage applied to the circuit being checked, measure voltage between each terminal and body ground.
- If measurements were taken as shown in the figure at the right and results are as listed below, it means that the circuit is open between terminals A and B.

 Voltage Between:
 - C and body ground: Approx. 5 V
 - B and body ground: Approx. 5 V
 - A and body ground: 0 V

- Also, if measured values are as listed below, a resistance (abnormality) exists which causes the voltage drop in the circuit between terminals A and B.

 Voltage Between:
 - C and body ground: Approx. 5 V
 - B and body ground: Approx. 5 V
 - A and body ground: 3 V

(2 V voltage drop)
SHORT CIRCUIT CHECK (WIRE HARNESS TO GROUND)

- Disconnect the negative cable from the battery.
- Disconnect the connectors/couplers at both ends of the circuit to be checked.

NOTE:

If the circuit to be checked branches to other parts as shown, disconnect all connectors/couplers of those parts. Otherwise, diagnosis will be misled.

- Measure resistance between terminal at one end of circuit (A terminal in figure) and body ground. If continuity is indicated, there is a short circuit to ground between terminals A and C.

- Disconnect the connector/coupler included in circuit (coupler B) and measure resistance between terminal A and body ground. If continuity is indicated, the circuit is shorted to the ground between terminals A and B.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throttle body identification number</td>
<td></td>
</tr>
<tr>
<td>Starter valve vacuum difference</td>
<td></td>
</tr>
<tr>
<td>Idle speed</td>
<td>1500 +/- 100 rpm</td>
</tr>
<tr>
<td>Throttle grip free play</td>
<td>2-4 mm</td>
</tr>
<tr>
<td>Intake air temperature sensor resistance</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature sensor resistance</td>
<td></td>
</tr>
<tr>
<td>Fuel injector resistance</td>
<td></td>
</tr>
<tr>
<td>Ignition pulse generator peak voltage</td>
<td>V</td>
</tr>
<tr>
<td>Manifold absolute pressure at idle</td>
<td>420 +/- 30 mm Hg</td>
</tr>
<tr>
<td>Fuel pressure at idle</td>
<td>300 kPa</td>
</tr>
</tbody>
</table>

TORQUE VALUES

ECT sensor
Pressure regulator mounting bolt
Fuel pump mounting nut
4-1. FUEL INJECTION SYSTEM

PARTS LOCATION

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECU</td>
</tr>
<tr>
<td>2</td>
<td>Roll Over Sensor</td>
</tr>
<tr>
<td>3</td>
<td>Injector</td>
</tr>
<tr>
<td>4</td>
<td>Speed Sensor</td>
</tr>
<tr>
<td>5</td>
<td>Engine Coolant Temperature</td>
</tr>
<tr>
<td>6</td>
<td>Crank Position Sensor</td>
</tr>
<tr>
<td>7</td>
<td>Pressure Regulator</td>
</tr>
<tr>
<td>8</td>
<td>Fuel Pump (Reservoir)</td>
</tr>
<tr>
<td>9</td>
<td>Fuel Filter x 2</td>
</tr>
<tr>
<td>10</td>
<td>Ignition Coil</td>
</tr>
<tr>
<td>11</td>
<td>Throttle Position Sensor</td>
</tr>
<tr>
<td>12</td>
<td>Idle Speed Controller</td>
</tr>
<tr>
<td>13</td>
<td>Temperature Manifold Air Pressure</td>
</tr>
<tr>
<td>14</td>
<td>Throttle Body</td>
</tr>
</tbody>
</table>
WIRING DIAGRAM
ECU TERMINAL

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Code</th>
<th>Wire Color</th>
<th>Circuit</th>
<th>Note</th>
<th>Pin No.</th>
<th>Pin Code</th>
<th>Wire Color</th>
<th>Circuit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>Y/B</td>
<td>VSENS</td>
<td>Sensor voltage</td>
<td>G1</td>
<td>7</td>
<td>Br/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>13</td>
<td>Blank</td>
<td></td>
<td></td>
<td>G2</td>
<td>19</td>
<td>Gr/R</td>
<td>SGND2</td>
<td>Signal ground</td>
</tr>
<tr>
<td>A3</td>
<td>25</td>
<td>Blank</td>
<td></td>
<td></td>
<td>G3</td>
<td>31</td>
<td>W/Br</td>
<td>TPS</td>
<td>Throttle position sensor</td>
</tr>
<tr>
<td>A4</td>
<td>37</td>
<td>Br/L</td>
<td>VBK</td>
<td>Key SW voltage</td>
<td>G4</td>
<td>43</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>2</td>
<td>P/W</td>
<td>CAN_H</td>
<td>Diagnosis Tool</td>
<td>H1</td>
<td>8</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>14</td>
<td>W/G</td>
<td>RPM</td>
<td></td>
<td>H2</td>
<td>20</td>
<td>W</td>
<td>Gear B</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>26</td>
<td>Y/G</td>
<td>MIL</td>
<td>Engine Check</td>
<td>H3</td>
<td>32</td>
<td>Pu</td>
<td>VEH</td>
<td>Speed sensor</td>
</tr>
<tr>
<td>B4</td>
<td>38</td>
<td>R/W</td>
<td>VBD</td>
<td>Battery Voltage</td>
<td>H4</td>
<td>44</td>
<td>L</td>
<td>Gear C</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>3</td>
<td>P/G</td>
<td>CAN_L</td>
<td>Diagnosis Tool</td>
<td>J1</td>
<td>9</td>
<td>B</td>
<td>Fuel Pump relay</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>15</td>
<td>B/Y</td>
<td>Temp.</td>
<td>Temperature LED</td>
<td>J2</td>
<td>21</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>27</td>
<td>Gr/R</td>
<td>SGND1</td>
<td>Signal Ground</td>
<td>J3</td>
<td>33</td>
<td>R</td>
<td>Gear A</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>39</td>
<td>Br/B</td>
<td>Stepper B</td>
<td></td>
<td>J4</td>
<td>45</td>
<td>R/Gr</td>
<td>Override switch</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>4</td>
<td>LG/R</td>
<td>CPS-</td>
<td>Crank position sensor (-)</td>
<td>K1</td>
<td>10</td>
<td>O/W</td>
<td>Main relay</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>16</td>
<td>Pu/B</td>
<td></td>
<td>Fan relay</td>
<td>K2</td>
<td>22</td>
<td>B/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>28</td>
<td>G/B</td>
<td>Stepper D</td>
<td>Blank</td>
<td>K3</td>
<td>34</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>40</td>
<td>L/B</td>
<td>Stepper A</td>
<td>Blank</td>
<td>K4</td>
<td>46</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>5</td>
<td>L/Y</td>
<td>CPS+</td>
<td>Crank position sensor (+)</td>
<td>L1</td>
<td>11</td>
<td>R</td>
<td>VBR</td>
<td>Start relay voltage</td>
</tr>
<tr>
<td>E2</td>
<td>17</td>
<td>Blank</td>
<td></td>
<td>Blank</td>
<td>L2</td>
<td>23</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>29</td>
<td>Blank</td>
<td></td>
<td>Starter</td>
<td>L3</td>
<td>35</td>
<td>B/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>41</td>
<td>B/Y</td>
<td>Stepper C</td>
<td>Injector</td>
<td>L4</td>
<td>47</td>
<td>L/G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>6</td>
<td>G/Y</td>
<td>Brake SW</td>
<td></td>
<td>M1</td>
<td>12</td>
<td>B/Y</td>
<td>Ignition</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>18</td>
<td>W/Y</td>
<td>MAP</td>
<td>Manifold Air Pressure</td>
<td>M2</td>
<td>24</td>
<td>Blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>30</td>
<td>G/Br</td>
<td>TIA</td>
<td>Temperature Intake Air</td>
<td>M3</td>
<td>36</td>
<td>Gr</td>
<td>PGND</td>
<td>Ground</td>
</tr>
<tr>
<td>F4</td>
<td>42</td>
<td>Y/R</td>
<td>ECT</td>
<td>E/G Temperature sensor</td>
<td>M4</td>
<td>48</td>
<td>Gr</td>
<td>PGND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Note: This table provides a detailed list of ECU terminal connections, including pin numbers, pin codes, wire colors, circuits, and notes. Each column represents a specific aspect of the terminal connections, facilitating easy reference and troubleshooting.
SYSTEM TROUBLESHOOTING CUSTOMER COMPLAINT ANALYSIS

Record details of problem (failure, complaint) and how it occurred as described by the customer. For this purpose, use of an inspection form such as below will facilitate collecting information required for proper analysis and diagnosis.

EXAMPLE: CUSTOMER PROBLEM INSPECTION FORM

<table>
<thead>
<tr>
<th>User name:</th>
<th>Model:</th>
<th>VIN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of issue</td>
<td>Date Reg.</td>
<td>Date of problem:</td>
</tr>
</tbody>
</table>

Malfunction lamp condition (LED) | □ Always ON □ Sometimes ON □ Always OFF □ Good condition

Malfunction code | Malfunction code ()

PROBLEM SYMPTOMS

☐ Difficult Starting
☐ No cranking
☐ No initial combustion
☐ No combustion
☐ Poor starting at
 (□ cold □ warm □ always)
☐ Other ____________________

☐ Poor Drivability
☐ Hesitation on acceleration
☐ Back fire / ☐ After fire
☐ Lack of power
☐ Surging
☐ Abnormal knocking
☐ Engine rpm jumps briefly
☐ Other ____________________

☐ Poor Idling
☐ Poor fast idle
☐ Abnormal idling speed
 (□ High □ Low) (rpm)
☐ Unstable
☐ Hunting (rpm to rpm)
☐ Other ____________________

☐ Engine Stall when
☐ Immediately after start
☐ Throttle valve is opened
☐ Throttle valve is closed
☐ Load is applied
☐ Other ________________

☐ OTHERS:
ATV ENVIRONMENTAL CONDITION WHEN PROBLEM OCCURS

Environmental condition

<table>
<thead>
<tr>
<th>Weather</th>
<th>□ Fair □ Cloudy □ Rain □ Snow □ Always □ Other ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>□ Hot □ Warm □ Cool □ Cold (°C) □ Always</td>
</tr>
<tr>
<td>Frequency</td>
<td>□ Always □ Sometimes (times/day, month) □ Only once</td>
</tr>
<tr>
<td></td>
<td>□ Under certain condition</td>
</tr>
<tr>
<td>Road</td>
<td>□ Urban □ Suburb □ Highway □ Mountainous (□ Uphill □ Down hill)</td>
</tr>
<tr>
<td></td>
<td>□ Tar macadam □ Gravel □ Other ________</td>
</tr>
</tbody>
</table>

ATV condition

<table>
<thead>
<tr>
<th>Engine condition</th>
<th>□ Cold □ Warming up phase □ Warmed up □ Always</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Other at starting</td>
</tr>
<tr>
<td></td>
<td>□ Immediately after start □ Racing without load</td>
</tr>
<tr>
<td></td>
<td>□ Engine speed (________ rpm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATV condition</th>
<th>During driving: □ Constant speed □ Accelerating □ Decelerating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Right hard corner □ Left hand corner</td>
</tr>
<tr>
<td></td>
<td>□ At shop □ ATV speed when problem occurs (________ km/h, ________ mile/h)</td>
</tr>
<tr>
<td></td>
<td>□ Other ____________</td>
</tr>
</tbody>
</table>

NOTE:

The above form is a standard sample. The form should be modified according to conditions and characteristics of each market.
EFI SYSTEM COMPONENTS INSPECTION

T-MAP SENSOR

• Turn the ignition OFF.
• Disconnect the T-MAP sensor 4P connector.
• Check for loose or poor contact on the MAP sensor connector.

• Connect the T-MAP sensor connector.
• Start the engine and check that the MIL light.

2. Vrev
3. Vout (℃)
4. GND

Connector Type
SUNIUSCO : 6098-0144 E04TGY
TMAP CONNECTOR INTERFACE

• Turn the ignition switch OFF.
• Disconnect the MAP sensor 4P connector.
• Turn the ignition switch ON.
• Measure the voltage at the wire harness side connector.
 Connection: Yellow/Black (+) — Ground(-)
 Standard: 5.0 +/- 0.1V

• Measure the voltage between the connector terminals of wire harness side.
 Connection: Yellow/Black (+) — Gray/Red(-)
 Standard: 5.0 +/- 0.1V

• Turn the ignition switch OFF.
• Connect the TMAP sensor 4P connector.
ECT SENSOR

INSPECTION

• Turn the ignition switch OFF.
• Disconnect ECT sensor 2P connector.
• Check for loose or poor contact on the ECT sensor connector.

• Connect the ECT sensor connector.
• Turn the ignition switch ON.
• Check the MIL light.

• Turn the ignition switch OFF.
• Disconnect the ECT sensor connector.
• Measure the resistance at ECT sensor terminals.
 Connection:
 Standard: 2.3~2.6 kΩ (at 20℃)

• Turn the ignition switch ON.
• Measure the voltage between the ECT sensor connector terminal of the wire harness side and ground.
 Connection: Yellow/Red (+) – Ground(-)
 Standard: 5.0 +/- 0.1V

• Measure the voltage at ECT sensor connector of the wire harness side.
 Connection: Yellow/Red (+) – Gray/Red(-)
 Standard: 5.0 +/- 0.1V
REMOVAL / INSTALLATION

- Disconnect the ECT sensor 2P connector from the sensor
- Remove the ECT sensor.
- Install the new ECT sensor.

TORQUE: 120 kgf/cm
- Connect the ECT sensor 2P connector.

Standard:

<table>
<thead>
<tr>
<th>TEMPERATURE(℃)</th>
<th>RESISTANCE VALUES(OHM)</th>
<th>TOL. (OHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3500</td>
<td>±250</td>
</tr>
<tr>
<td>60</td>
<td>704</td>
<td>±45</td>
</tr>
<tr>
<td>90</td>
<td>260</td>
<td>±20</td>
</tr>
</tbody>
</table>
TP SENSOR
INSPECTION

• Turn the ignition switch OFF.
• Disconnect the TP sensor 3P connector.
• Check for loose or poor contact on the TP sensor connector.

• Connect the TP sensor connector.
• Start the engine and check the MIL light.

• Turn the ignition switch OFF.
• Disconnect the TP sensor 3P connector.
• Turn the ignition switch ON.
• Measure the voltage between the wire harness side connector terminal and ground.
 Connection: Yellow/Black (+) – Ground(-)
 Standard: 5.0 ± 0.1V

• Measure the voltage at TP sensor terminals of the wire harness side.
 Connection: Yellow/Black (+) – Gray/Red(-)
 Standard: 5.0 ± 0.1V
• Working voltage value: 5.0 ± 0.1V
• Full throttle open voltage: 3.9 ± 0.2V
• Full throttle closed voltage: 0.5 ± 0.05V
• WARNING!
 Never loosen the screw of TPS, result the unsteady idle.

• Using diagnosis tool to confirm the throttle output signal.
 1. Connected to the "diagnosis tool", and open the main switch, but not to start engine.
 2. "Diagnosis tool" selects to a "Live Data" screen.
 3. Rotations throttle and check voltages.
VEHICLE SPEED SENSOR

- Turn the ignition switch OFF.
- Disconnect the vehicle speed sensor 3P connector.
- Check for loose or poor contact on the vehicle speed sensor connector.

- Connect the vehicle speed sensor 3P connector.
- Start the engine.
- Ride the vehicle and keep the engine more than 5,000 RPM about 20 seconds or more.
- Check the MIL light.

- Turn the ignition switch OFF.
- Disconnect the vehicle speed sensor 3P connector.
- Turn the ignition switch ON.
- Measure the voltage at the wire harness side connector.
 Connection: Red (+) – Black/White(-)
 Standard: 12 V
4-1. FUEL INJECTION SYSTEM

INJECTOR

- Turn the ignition switch OFF.
- Disconnect the injector 2P connector.
- Check for loose or poor contact on the injector 2P connector.

- Connect the injector 2P connector.
- Turn the ignition switch ON.
- Check the MIL light.

- Turn the ignition switch OFF.
- Disconnect the injector 2P connector and measure the resistance of the injector.
 Connection: Red (+) — Blue/Green(-)
 Standard: 12.0+/−0.6 Ω

- Check for continuity between the injector and ground.
 Connection: Red (+) — Ground(-)
 Standard: continuity

- Turn the ignition switch ON.
- Measure the voltage between the injector connector of the wire harness side and ground.
 Connection: Red (+) — Ground(-)
 Standard: battery voltage
INSPECTION
• Start the engine and let it idle.
• Confirm the injector operating sounds with a sounding rod or stethoscope.
• If the injector does not operate, replace the injector.

REMOVAL
• Disconnect the injector 2P connector.
• Remove the bolts and fuel rail assembly.
• Remove the injector from the intake pipe.

INSTALLATION
• Install injector on the intake pipe.
• Being careful not to damage the O-ring of injector.
• Install fuel rail assembly and tighten the bolt.

TORQUE: 120 kgf-cm
• Connect the injector 2P connector.
CRANK POSITION SENSOR

- Turn the ignition switch OFF.
- Disconnect the crank position sensor 2P connector.
- Check for loose or poor contact on the crank position sensor 2P connector.

- Connect the crank position sensor 2P connector.
- Turn the starter motor more than 10 seconds and then check that the MIL light.

- Turn the ignition switch OFF.
- Disconnect the crank position sensor 2P connector.
- Check for continuity between the crank position sensor connector terminal and ground.
 Connection: Blue (+) — Ground(-)
 Standard: No continuity

- Crank the engine with the starter motor, and measure the crank position sensor peak voltage at the crank position sensor 2P connector.
 Connection: Blue (+) — Sky Blue(-)
 Standard: 0.7V
IGNITION COIL

• Turn the ignition switch OFF.
• Disconnect the ignition coil 2P connector.
• Check for loose or poor contact on the ignition coil 2P connector.

• Connect the ignition coil 2P connector.
• Turn the starter motor more than 10 seconds and then check that the MIL light.

• Turn the ignition switch OFF.
• Disconnect the ignition coil 2P connector.
• Check for continuity between the ignition coil connector terminal and ground.
 Connection: Red (+) — Ground(-)
 Standard: No continuity

• Crank the engine with the starter motor, and measure the ignition coil peak voltage at the ignition coil 2P connector.
 Connection: Red (+) — Black/Yellow(-)
 Standard: 0.7V

• Check for resistance between the ignition coil connector terminal and ground.
 Standard: 0.63±0.05 Ω
THROTTLE BODY
REMOVAL
NOTE:
• Before disconnecting the fuel hose, release the fuel pressure by loosening the clamp.
• Always replace the clamp when the fuel hose is removed or loosened.

DISASSEMBLY
• Disconnect the TP sensor, T-MAP sensor and ISC sensor connector from the throttle
• Disconnect intake pipe rubber tube from the throttle body.
• Disconnect the throttle body from the air cleaner case.
NOTE:
• Do not damage the throttle body. It may cause incorrect throttle and idle valve.
• The throttle body is factory pre-set. Do not disassemble in a way other than shown in this manual.
• Do not loosen or tighten the white painted bolts and screws of the throttle body. Loosening or tightening them can cause throttle and idle valve failure.
• Disconnect the throttle cable end from the throttle drum.

ASSEMBLY
• Connect the throttle cable end to the throttle drum.
• Connect the TP, T-MAP and ISC sensor connector on the throttle body.
• Install and tighten the intake pipe rubber tube on the throttle body.
• Install the throttle body to the air cleaner case.
PRESSURE REGULATOR
REMOVAL / INSTALLATION

NOTE:
- Remove the pressure regulator mounting bolts and cover then remove the pressure regulator.
- Disconnect injector fuel hose (2) to release fuel pressure.
- Disconnect fuel supply hose (1).
- Disconnect fuel return hose (3).

NOTE:
- Recommends that hose clamp be discarded and replaced each time they are removed or loosened. They are one time usage only.

Special Tool:
- Install the pressure regulator in the reverse order of removal.

TORQUE: 100kgf-cm
ROLL OVER SENSOR INSPECTION

• Remove the seat set.
• Turn the ignition switch ON and measure the voltage between the following terminals of the Roll Over sensor connector with the connector connected.

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>STANDARD</th>
</tr>
</thead>
</table>

• Turn the ignition switch OFF.
• Remove the screws, washers, nuts and roll over sensor.
• Place roll over sensor horizontal as shown and turn the ignition switch ON.
• The roll over sensor is normal if the power supply is closed.
• Incline the roll over sensor approximately 65 degrees to the left or right with the ignition switch ON.
• The roll over sensor is normal if the power supply is open.
• If you repeat this test, first turn the ignition switch OFF then turn the ignition switch ON.

REMOVAL / INSTALLATION

• Disconnect the roll over sensor 2P connector.
• Remove the two screws, nuts and roll over sensor.
• Installation is in the reverse order of removal.
• Tighten the mounting screws securely.

NOTE: Install the roll over sensor with its “UP” mark facing up.
ECU
REMOVAL / INSTALLATION
• Remove the seat set.
• Disconnect the ECU 48P connectors.

POWER INPUT LINE
• Turn the ignition switch ON.
• Measure the voltage between the ECU and ground.
• There should be battery voltage.
• If there is no voltage, check for an open circuit in Black/White wire between the ECU and roll over sensor/relay.
• If the wire is OK, check for the roll over sensor/relay.
4-1. FUEL INJECTION SYSTEM

FUEL LINE INSPECTION

NOTE:
• Before disconnecting fuel hose, release the fuel pressure by loosening the pressure regulator fuel hose clamp on the injector hose.
• Always replace the clamp when the hose is removed or loosened.
• Disconnect the battery negative cable from the battery terminal.
• Disconnect the pressure regulator output hose and plug the hose.
• Slowly catch the remaining fuel using an approved gasoline container.

• Install the 3-way connector and attach the fuel pressure gauge as shown.

• Connect the battery negative cable.
• Start the engine.
• Read the fuel pressure at idle speed.

IDLE SPEED: 1500±100 RPM
STANDARD: 300 kPa

• If the fuel pressure is higher than specified, inspect the following:
 - Pinched or clogged fuel return hose.
 - Pressure regulator
 - Fuel pump

• If the fuel pressure is lower than specified, inspect the following:
 - Fuel line leaking.
 - Clogged fuel filter
 - Pressure regulator
 - Fuel pump

• After inspection, remove the fuel pressure gauge and reinstall and tighten the fuel hose clamp using the new clamp.
• Always replace the clamp when the fuel hose is removed or loosened.
• Connect the pressure regulator output hose.
• Install the removed parts in reverse order of removal.
FUEL FLOW INSPECTION

- Disconnect the fuel pump relay.
- Jump the Black/Purple and Red/Orange wire terminals of the wire harness side using a jumper wire.
- When the fuel return hose is disconnected, gasoline will spill out from the hose. Use an approved gasoline container to drain the gasoline.
- Wipe off spilled gasoline.
- Disconnect the fuel return hose on the top of fuel tank; plug the fuel tank inlet joint.
- Turn the ignition switch ON for 10 seconds.
- Measure the amount of fuel flow.
 Amount of fuel flow:
 300 cm³ minimum/*10 seconds at 12V
- If the fuel flow is less than specified, inspect the following:
 - Pinched or clogged fuel hose and fuel return hose
 - Clogged fuel filter
 - Pressure regulator
 - Fuel pump
- After inspection, connect the fuel return hose.
- Start the engine and check for leaks.

FUEL PUMP INSPECTION

- Turn the ignition switch ON and confirm that the fuel pump operates for a few seconds.
- If the fuel pump does not operate, inspect as follow:
 - Disconnect the fuel pump 2P connector.
 - Turn the ignition switch ON and measure the voltage between the terminals.
 Connection: Gray (+) Black/Purple (-)
 The standard is 4±1 Ω
- There should be battery voltage for a few seconds.
- If there is battery voltage, replace the fuel pump.
- If there is no battery voltage, inspect the following:
 - Main fuse 30A
 - Fuel pump relay
 - Roll Over sensor
4-1. FUEL INJECTION SYSTEM

- ECU REMOVAL

NOTE:
- Before disconnecting the fuel hose, release the fuel pressure.
- Always replace the clamp when the fuel hose is removed or loosened.
- Remove the fuel tank
- Remove the fuel pump mounting nuts.
- Remove the fuel pump assembly and packing.

FUEL FILTER REPLACEMENT
- Disconnect the fuel hose from the fuel filter.
- Remove the screw, clamp and fuel filter.
- Install the fuel filter in the reverse order of removal.
NOTE: The direction of fuel filter with “IN” mark.

INSTALLATION
- Place new packing onto the fuel tank.
- Install the fuel pump, being careful not to damage the fuel pump wire.
- Install and tighten the fuel pump mounting nuts in the sequence shown.

TORQUE: 120 kgf/cm.

FUEL PUMP RELAY
- Disconnect the fuel pump relay 5P connector, remove the fuel pump relay.
- Connect the ohmmeter to the fuel pump relay connector terminals 30 and 87.

CONNECTION:
- Connect the 12V battery to the fuel pump relay connector terminals 85 and 86.

CONNECTION:
- There should be continuity only when the 12V battery is connected.
- If there is no continuity when the 12V battery is connected, replace the fuel pump relay.
4-1. FUEL INJECTION SYSTEM

FUEL TANK/RESERVOIR (FUEL PUMP ASSEMBLY)

Removal
• Loosen the fuel tank mounting bolt/nut.
• Release the fuel pressure.
• Disconnect the fuel tank air vent hose and supply hose.
• Remove the clamp then disconnect the fuel hose.
• Remove the following:
 - Fuel tank supply hose
 - Fuel tank air vent hose
 - Fuel pump/reserve sensor 2P connector

NOTE: The clamp for one time use only.
• Clamp the fuel return hose.
• Disconnect the fuel return hose at the pressure regulator.
• Install the following:
 - Fuel hose (with “▲” mark)
 - Air vent hose
 - Fuel pump/reserve sensor 2P connector

NOTE:
• Always replace new clamp while disassemble or loosen.
• Connect the fuel hose to the pressure regulator.
• Connect the fuel pump/reserve sensor 2P connector.
• Connect the fuel output hose to the fuel rail with new clamp.
• While pushing the fuel hose to the fuel rail, install and tighten the clamp.

NOTE: Do not apply excessive force to the fuel pipe.
SENSOR CIRCUIT TROUBLESHOOTING
CPS SENSOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The signal does not reach ECU for 3 sec. or more, after receiving the starter signal.</td>
<td>• Metal particles or foreign material being stuck on the CPS sensor and rotor tip</td>
</tr>
<tr>
<td></td>
<td>• CPS sensor circuit open or short</td>
</tr>
<tr>
<td></td>
<td>• CPS sensor malfunction</td>
</tr>
<tr>
<td></td>
<td>• ECU malfunction</td>
</tr>
</tbody>
</table>

INSPECTION

Step 1

1) Remove the seat set.
2) Remove the left side cover.
3) Turn the ignition switch OFF.
4) Check the CPS sensor coupler for loose or poor contacts.
 If OK, then measure the CPS sensor resistance.
5) Disconnect the CPS sensor coupler and measure the resistance.
 CPS sensor resistance: 115 +/- 10 Ω
 (Blue – Sky Blue)
6) If OK, then check the continuity between each terminal and ground.
 CPS sensor continuity: ∞ Ω (Infinity)
 (Blue – Ground)
 (Green – Ground)
4-1. FUEL INJECTION SYSTEM

Are the resistance and continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to next step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Replace CPS sensor with new one</td>
</tr>
</tbody>
</table>

7) After repairing the trouble, clear the DTC using Diagnosis Tool.

Step 2

1) Crank the engine a few seconds with the starter motor, and measure the CPS sensor peak voltage at the coupler.
2) Repeat the above test procedure a few times and measure the highest peak voltage.
 CPS sensor peak voltage: 4.0 V and more (+ Blue -- - Sky-Blue)

Is the voltage OK?

| YES | • Blue or Sky-Blue wire open or shorted to ground
| | • Loose or poor contacts on the CPS sensor coupler or ECU coupler (terminal 4 or 5)
| | • If wire and connection are OK, intermittent trouble or faulty ECU.
| | • Recheck each terminal and wire harness for open circuit and poor connection.
| | • Replace the ECU with a known good one, and inspect it again. |
| NO | • Inspect that metal particles or foreign material stuck on the CPS sensor and rotor tip.
| | • If there are no metal particles and foreign material, then replace the CPS sensor with a new one. |

3) After repairing the trouble, clear the DTC using Diagnosis tool.
TMAP SENSOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MAP sensor voltage low or high (0.1 V Sensor voltage < 4.8 V)</td>
<td>• Clogged vacuum passage between throttle body and T-MAP sensor</td>
</tr>
<tr>
<td>NOTE: Note that atmospheric pressure varies depending on weather conditions as well as altitude. Take that into consideration when inspecting voltage.</td>
<td>• Air being drawn from vacuum passage between throttle body and T-MAP sensor</td>
</tr>
<tr>
<td></td>
<td>• T-MAP sensor circuit open or shorted to ground</td>
</tr>
<tr>
<td></td>
<td>• T-MAP sensor malfunction</td>
</tr>
<tr>
<td></td>
<td>• ECM malfunction</td>
</tr>
</tbody>
</table>

INSPECTION

Step 1
1) Loosen and lift up the fuel tank.
2) Turn the ignition switch OFF.
3) Check the T-MAP sensor couple for loose or poor contacts.
 If OK, then measure the T-MAP sensor input voltage.
4) Disconnect the T-MAP sensor coupler.
5) Turn the ignition switch ON.
6) Measure the voltage at the Yellow/Black wire and ground.
7) Also, measure the voltage at the Yellow/Black wire and Gray/Red wire.
 T-MAP sensor input voltage: 4.5 – 5.5 V
 (+Yellow/Black – - Ground)
 (+Yellow/Black – - Gray/Red)
4-1. FUEL INJECTION SYSTEM

Is the voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to next step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>• Loose or poor contacts on the ECU coupler terminal 1 or 27</td>
</tr>
<tr>
<td></td>
<td>• Open or short circuit in the Yellow/Black wire or Gray/Red wire</td>
</tr>
</tbody>
</table>

8) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2

1) Connect the T-MAP sensor coupler.
2) Insert the needle pointed probes to the lead wire coupler.
3) Start the engine at idle speed and measure the T-MAP sensor output voltage at the wire side coupler.
 T-MAP sensor output voltage: Approx. 2.6 V at idle speed
 (+Yellow/Black – - Gray/Red)

Is the voltage OK?

YES	• Yellow/Black or Gray/Red wire open or shorted to ground, or poor 18, 30 or 1 connection.
	• If wire and connection are OK, intermittent trouble or faulty ECU.
	• Recheck each terminal and wire harness for open circuit and poor connection.
	• Replace the ECU with a known good one, and inspect it again.

| NO | • If check result is not satisfactory, replace new T-MAP (throttle body). |

5) After repairing the trouble, clear the DTC using Diagnosis tool.
TP SENSOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage is not within the following range.</td>
<td>• TP sensor maladjusted</td>
</tr>
<tr>
<td>Difference between actual throttle opening and opening calculated by ECU is larger</td>
<td>• TP sensor circuit open or short</td>
</tr>
<tr>
<td>than specified value.</td>
<td>• TP sensor malfunction</td>
</tr>
<tr>
<td>0.1 V Sensor voltage < 4.8 V</td>
<td>• ECU malfunction</td>
</tr>
<tr>
<td>Sensor voltage is higher than specified value.</td>
<td>• TP sensor circuit shorted to VSENS or ground circuit open</td>
</tr>
<tr>
<td>Sensor voltage is lower than specified value.</td>
<td>• TP sensor circuit open or shorted to ground or VSENS circuit open</td>
</tr>
</tbody>
</table>

INSPECTION

Step 1

When output voltage is out of specified

1. Loosen and lift up the fuel tank.
2. Turn the ignition switch OFF.
3. Check the TP sensor coupler for loose or poor contacts.
 - If OK, then measure the TP sensor input voltage.
4. Disconnect the TP sensor coupler.
5. Turn the ignition switch ON.
6. Measure the voltage at the Red wire B and ground.
7. Also, measure the voltage at the Yellow/Black wire and Gray/Red wire.
 - TP sensor input voltage: 4.5 – 5.5 V
 - (+Yellow/Black – Ground)
 - (+Yellow/Black – Gray/Red)
Is the voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to next step 2</th>
</tr>
</thead>
</table>
| NO | • Loose or poor contacts on the ECU coupler (terminal 1 or 27)
• Open or short circuit in the Yellow/Black wire or Gray/Red wire |

Step 1

When sensor voltage is higher than specified
1) Loosen and lift up the fuel tank.
2) Turn the ignition switch OFF.
3) Check the TP sensor coupler for loose or poor contacts.
 If OK, then check the TP sensor lead wire continuity.
4) Disconnect the TP sensor coupler.
5) Check the continuity between W/Br wire and Y/B wire.
 If the sound is not heard from the tester, the circuit condition is OK.
6) Disconnect the ECU coupler.
7) Check the continuity between W/Br wire and terminal 31.
8) Also, check the continuity between Gr/R wire and terminal 27.
 TPS lead wire continuity: Continuity (sound)

Is the continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to next step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>W/Br wire shorted to VSENS or SGND1 wire open</td>
</tr>
</tbody>
</table>

9) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 1

When sensor voltage is lower than specified
1) Loosen and lift up the fuel tank.
2) Turn the ignition switch OFF.
3) Check the TP sensor coupler for loose or poor contacts.
 If OK, then measure the TP sensor lead wire continuity.
4) Disconnect the TP sensor coupler.
5) Check the continuity between W/Br wire and ground.
6) Also, check the continuity between W/Br wire and Gr/R wire.

C. If the sound is not heard from the tester, the circuit condition is OK.
7) Disconnect the ECU coupler.
8) Check the continuity between W/Br wire and terminal 31.
9) Also, check the continuity between Y/B wire and terminal .

TPS lead wire continuity: Continuity (sound)
Is the continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 1 and step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Y/B wire or Gr/R wire open, or Gr/R wire shorted to ground</td>
</tr>
</tbody>
</table>

10) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2

1) Turn the ignition switch OFF.
2) Disconnect the TP sensor coupler.
3) Check the continuity between W/Br wire and ground.

TP sensor continuity: \(\infty \, \Omega \) (Infinity)

(White/Brown – Ground)

4) If OK, then measure the TP sensor resistance at the terminals (between Bottom and Center pin).
5) Turn the throttle grip and measure the resistance.

TP sensor resistance

Throttle valve is closed: Approx. 1.1 k\(\Omega \)
Throttle valve is opened: Approx. 4.4 k\(\Omega \)

6) If OK, then measure the TP sensor resistance at the terminals (between Upper and Center pin).

TP sensor resistance: Approx. 4.66 k\(\Omega \)

(Upper pin – Center pin)
Are the continuity and resistance OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 3</th>
</tr>
</thead>
</table>
| NO | • Reset the TP sensor position correctly.
 • Replace the new TP sensor (throttle body). |

7) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 3

1) Connect the TP sensor coupler.
2) Insert the needle pointed probes to the lead wire coupler.
3) Turn the ignition switch ON.
4) Measure the TP sensor output voltage at the coupler (between W/Br wire and Gr/R wire) by turning the throttle grip.

 TP sensor output voltage
 - Throttle valve is closed: Approx. 1.1 V
 - Throttle valve is opened: Approx. 4.4 V

Is the voltage OK?

| YES | • Y/B, W/Br or Gr/R wire open or shorted to ground, or poor 1, 31 or 27 connection
 • If wire and connection are OK, intermittent trouble or faulty ECU.
 • Recheck each terminal and wire harness for open circuit and poor connection.
 • Replace the ECU with a known good one, and inspect it again. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>If check result is not satisfactory, replace new TP sensor (throttle body).</td>
</tr>
</tbody>
</table>

5) After repairing the trouble, clear the DTC using Diagnosis tool.
ECT SENSOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage is not within the following range.</td>
<td>• ECT sensor circuit open or short</td>
</tr>
<tr>
<td>0.1 Sensor voltage < 4.6 V</td>
<td>• ECT sensor malfunction</td>
</tr>
<tr>
<td>Sensor voltage is higher than specified value.</td>
<td>• ECT sensor circuit open or ground circuit open</td>
</tr>
<tr>
<td>Sensor voltage is lower than specified value.</td>
<td>• ECT sensor circuit shorted to ground</td>
</tr>
</tbody>
</table>

INSPECTION

Step 1

(When output voltage is out of specified)

1. Turn the ignition switch OFF.
2. Check the ECT sensor coupler for loose or poor contacts.
 - If OK, then measure the ECT sensor voltage at the wire side coupler.
3. Disconnect the ECT sensor coupler and turn the ignition switch ON.
4. Measure the voltage between Y/R wire terminal and ground.
5. Also, measure the voltage between Y/R wire terminal and Gr/R wire terminal.

ECT sensor input voltage: 4.5 – 5.5 V

(+Y/R – - Ground)
(+Y/R – - Gr/R)
Is the voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
</table>
| NO | • Loose or poor contacts on the ECU coupler (terminal 42 or 27)
| | • Open or short circuit in the Y/R wire or Gr/R wire |

Step 1

(When sensor voltage is higher than specified)

1) Turn the ignition switch OFF.
2) Check the ECT sensor coupler for loose or poor contacts.
 If OK, then check the ECT sensor lead wire continuity.
3) Remove the left side cover.
4) Disconnect the ECT sensor coupler.
5) Remove the ECU coupler.
6) Check the continuity between Y/R wire and terminal 42.
7) Also, check the continuity between Gr/R wire and terminal 27.
 ECTS lead wire continuity: Continuity (sound)

Is the continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Y/R or Gr/R wire open</td>
</tr>
</tbody>
</table>

8) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 1

(When sensor voltage is lower than specified)

1) Turn the ignition switch OFF.
2) Check the ECT sensor coupler for loose or poor contacts.
 If OK, then check the ECT sensor lead wire continuity.
3) Disconnect the ECT sensor coupler.
4) Check the continuity between Y/R wire and ground.
5) If the sound is not heard from the tester, the circuit condition is OK.
 Tester knob indication: Continuity (sound)
6) Connect the ECT sensor coupler.
7) Turn the ignition switch ON.
8) Measure the voltage between Y/R wire and ground.
 Output voltage: 0.1 – 4.6 V
 (+ Y/R – - Ground)
Are the continuity and voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Y/R wire shorted to ground.</td>
</tr>
</tbody>
</table>

9) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2
1) Turn the ignition switch OFF.
2) Disconnect the ECT sensor coupler.
3) Measure the ECT sensor resistance.
 ECT sensor resistance:
 Approx. 2.3 – 2.6 kΩ at 20 °C (68 °F)
 (Terminal – Terminal)
Is the resistance OK?

| YES | • Y/R or Gr/R wire open or shorted to ground, or poor 42 or 27 connection
 | • If wire and connection are OK, intermittent trouble or faulty ECU.
 | • Recheck each terminal and wire harness for open circuit and poor connection.
 | • Replace the ECU with a known good one, and inspect it again. |
|-----|--|
| NO | Replace ECT sensor with a new one. |

4) After repairing the trouble, clear the DTC using Diagnosis tool.

ECT sensor specification

<table>
<thead>
<tr>
<th>Engine Coolant Temperature</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 °C (68 °F)</td>
<td>Approx. 2.45 kΩ</td>
</tr>
<tr>
<td>40 °C (104 °F)</td>
<td>Approx. 1.148 kΩ</td>
</tr>
<tr>
<td>60 °C (140 °F)</td>
<td>Approx. 0.587 kΩ</td>
</tr>
<tr>
<td>80 °C (176 °F)</td>
<td>Approx. 0.322 kΩ</td>
</tr>
</tbody>
</table>
IGNITION SYSTEM MALFUNCTION

TROUBLESHOOTING
No spark or poor spark

NOTE:
Check that the transmission is in neutral and check that the fuse is not blown and the battery is fully charged before diagnosing.

Step 1
1) Check the ignition system couplers for poor connections.
 Is there connection in the ignition switch couplers?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Poor connection of couplers</td>
</tr>
</tbody>
</table>

Step 2
1) Measure the battery voltage between input lead wires at the ECU with the ignition switch in the “ON” position.

Is the voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

- Faulty ignition switch
- Broken wire harness or poor connection of related circuit couplers
Step 3
1) Measure the ignition coil primary peak voltage.

NOTE:
This inspection method is applicable only with the multi circuit tester and the peak volt adaptor.

Is the peak voltage OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Go to step 5</td>
</tr>
</tbody>
</table>

Step 4
1) Check the plug caps for poor contacts.
2) If OK, then inspect the spark plugs.

Are the spark plugs OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Faulty spark plug (-s)</td>
</tr>
</tbody>
</table>

Step 5
1) Inspect the ignition coils.

Are the ignition coils OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Faulty ignition coil (-s)</td>
</tr>
</tbody>
</table>

Step 6
1) Measure the CPS sensor peak voltage and its resistance.

NOTE:
The CPS peak voltage inspection is applicable only with the multi-circuit tester and peak volt adaptor.

Are the peak voltage and its resistance OK?

YES	Faulty ECU
	Open or short circuit in wire harness
	Poor connection of ignition couplers

| NO | Faulty CPS sensor
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal particles or foreign material being stuck on the CPS sensor and rotor tip</td>
</tr>
</tbody>
</table>
4-1. FUEL INJECTION SYSTEM

FUEL INJECTOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
</table>
| CPS signals produced but fuel injector signal is interrupted continuous by 4 times or more. | • Injector circuit open or short
• Injector malfunction
• ECU malfunction |

Step 1
1) Turn the ignition switch OFF.
2) Check the injector coupler for loose or poor contacts.
 If OK, then measure the injector resistance.
3) Disconnect the injector coupler and measure the resistance between terminals.
 Injector resistance:
 Approx. 11.7 Ω at 20 °C (68 °F)
 (Terminal – Terminal)
4) If OK, then check the continuity between each terminal and ground.
 STP sensor continuity: ∞ Ω (Infinity)
Are the resistance and continuity OK?
 YES Go to step 2
 NO Replace the injector with a new one.
5) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2
1) Turn the ignition switch ON.
2) Measure the injector voltage between R wire and ground.
 Injector voltage: Battery voltage
 (+ R – - Ground)
NOTE:

Injector voltage can be detected only 3 seconds after ignition switch is turned ON.

Is the voltage OK?

| YES | • L/G wire open or shorted to ground, or poor 47 connection (cylinder side)
 | • If wire and connection are OK, intermittent trouble or faulty ECU.
 | • Recheck each terminal and wire harness for open circuit and poor connection.
 | • Replace the ECU with a known good one, and inspect it again. |
|---------|---|
| NO | Open circuit in the R wire |

3) After repairing the trouble, clear the DTC using Diagnosis tool.
FP RELAY CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
</table>
| No voltage is applied to fuel pump although fuel pump relay is turned ON, or voltage is applied to fuel pump, although fuel pump relay is turned OFF. | - Fuel pump relay circuit open or short
- Fuel pump relay malfunction
- ECU malfunction |

INSPECTION

Step 1
1) Remove the seat.
2) Turn the main switch OFF.
3) Check the FP relay coupler for loose or poor contacts.
 - If OK, then check the FP relay.
 - Is the FP relay OK?

YES	• Blue wire open or shorted to ground, or poor 9 connection
	• Red wire open or poor 11 connection
	• If wire and connection are OK, intermittent trouble or faulty ECU.
	• Recheck each terminal and wire harness for open circuit and poor connection.
	• Replace the ECU with a known good one, and inspect it again.

| NO | Replace the FP relay with a new one. |

4) After repairing the trouble, clear the DTC using Diagnosis tool.
ROLL OVER SENSOR CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
</table>
| The sensor voltage should be the following for 2 sec. and more, after ignition switch is turned ON. 0.2 Sensor voltage < 4.6 V | • TO sensor circuit open or short
• TO sensor malfunction
• ECU malfunction |
| Sensor voltage is higher than specified value. | • TO sensor circuit open or shorted to VSENS or ground circuit open |
| Sensor voltage is lower than specified value. | • TO sensor circuit shorted to ground or VSENS circuit open |

INSPECTION
Step 1
(When output voltage is out of specified)
1) Remove the seat set.
2) Turn the ignition switch OFF.
3) Check the Roll over sensor coupler for loose or poor contacts.
 If OK, then measure the Roll over sensor resistance.
4) Disconnect the Roll over sensor coupler.
5) Measure the resistance between terminal A and terminal C.
 Roll over sensor resistance: 19.1–19.7 kΩ (Terminal A – Terminal C)
Is the resistance OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Replace the Roll over sensor with a new one.</td>
</tr>
</tbody>
</table>
Step 1
(When sensor voltage is higher than specified)
1) Remove the seat set.
2) Turn the ignition switch OFF.
3) Check the Roll over sensor coupler for loose or poor contacts.
 If OK, then check the Roll over sensor lead wire continuity.
4) Disconnect the Roll over sensor coupler.
5) Check the continuity between Y/B wire and Pu/B wire.
 If the sound is not heard from the tester, the circuit condition is OK.
6) Disconnect the ECU coupler.
7) Check the continuity between Pu/B wire and terminal 16.
 Is the continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Pu/B wire shorted to VBR</td>
</tr>
</tbody>
</table>

8) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 1
(When sensor voltage is lower than specified)
1) Remove the seat set.
2) Turn the ignition switch OFF.
3) Check the Roll over sensor coupler for loose or poor contacts.
 If OK, then check the Roll over sensor lead wire continuity.
4) Disconnect the Roll over sensor coupler.
5) Check the continuity between Pu/B wire and ground. If the sound is not heard from the tester, the circuit condition is OK.
6) Disconnect the ECU coupler.
7) Check the continuity between Y/B wire and terminal 1.
 Also, then check the continuity between Pu/B wire B and terminal 16.
 Roll over sensor lead wire continuity:
 Continuity (sound)
Is the continuity OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Y/B or Pu/B wire open or Pu/B wire shorted to ground</td>
</tr>
</tbody>
</table>

10) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2
1) Connect the Roll over sensor coupler.
2) Insert the needle pointed probes to the lead wire coupler.
3) Turn the ignition switch ON.
4) Measure the voltage at the wire side coupler between Pu/B and B wires.
 Also, measure the voltage when leaning the vehicle.
 Roll over sensor voltage (Normal): 0.4 – 1.4 V (+ Pu/B – - B)
5) Dismount the Roll over sensor from its bracket and measure the voltage when it is leaned 65° and more, left and right, from the horizontal level.
 Roll over sensor voltage (Leaning): 3.7 – 4.4 V (+ Pu/B – - B)

Is the voltage OK?

| YES | • Y/B or Pu/B wire open or shorted to ground, or poor 1 or 16 connection
 • If wire and connection are OK, intermittent trouble or faulty ECU.
 • Recheck each terminal and wire harness for open circuit and poor connection.
 • Replace the ECU with a known good one, and inspect it again. |
|-----|--|
| NO | • Loose or poor contacts on the ECU coupler
 • Open or short circuit
 • Replace the Roll over sensor with a new one. |

6) After repairing the trouble, clear the DTC using Diagnosis tool.
4-1. FUEL INJECTION SYSTEM

IDLE SPEED CONTROLLER CIRCUIT MALFUNCTION

<table>
<thead>
<tr>
<th>DETECTED CONDITION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operation voltage does not reach the ISC.</td>
<td>• ISC malfunction</td>
</tr>
<tr>
<td>ECU does not receive communication signal from the ISC.</td>
<td>• ISC circuit open or short</td>
</tr>
<tr>
<td></td>
<td>• ISC motor malfunction</td>
</tr>
</tbody>
</table>

INSPECTION

Step 1

1) Remove the fuel tank.
2) Turn the ignition switch OFF.
3) Check the ISC lead wire coupler for loose or poor contacts.
4) Remove the air cleaner rubber tube.
5) Turn the ignition switch ON to check the ISC operation.
 (ISC operating order: 95% open → full open → 95% open)

Is the operating OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>Go to step 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Loose or poor contacts on the ISC coupler</td>
<td></td>
</tr>
<tr>
<td>• Open or short circuit in the Br/B, G/B, Y/B or B/Y wires</td>
<td></td>
</tr>
<tr>
<td>• If wire and connection are OK, go to Step 2.</td>
<td></td>
</tr>
</tbody>
</table>

6) After repairing the trouble, clear the DTC using Diagnosis tool.

Step 2

1) Turn the ignition switch OFF.
2) Disconnect the ISC lead wire coupler.
3) Check the continuity between each terminal and ground.
ISC continuity: ∞ Ω (Infinity)
(Terminal – Ground)

4) If OK, then measure the ISC resistance (between Br/B, G/B, Y/B and B/Y wires).
 ISC resistance: Approx. 6.5 Ω

Is the resistance OK?

| YES | • Br/B, G/B, Y/B and B/Y wire open or shorted to ground, or poor 28, 39, 40 and 41 connection
 • If wire and connection are OK, intermittent trouble or faulty ECU.
 • Recheck each terminal and wire harness for open circuit and poor connection.
 • Replace the ECU with a known good one, and inspect it again. |
|-----|--|
| NO | • Loose or poor contacts on the ECU coupler
 • Replace new ISC (throttle body). |

5) After repairing the trouble, clear the DTC using Diagnosis tool.

• Measure the resistance between A-D and B-C as below
• The standard are all follow 50 ± 0.5 Ω.
Fault Diagnosis

EFI Circuit inspection

Main Switch ON

Check light extinguished after 2 seconds

OK → NG

1. LED broken?
2. Fuse broken?
3. Battery voltage is too low?
4. ECU power line bad contact?
5. Poor contact of the main power switch?
6. ECU fault?

Battery & ECU voltage of less than 0.2 V?
1. Main switch OFF
2. Removed ECU coupler
3. Main switch ON
4. Use voltage meter measurement of the power-pin voltage difference
5. Confirmed ECU & Battery supply voltage differential pressure within the 0.2 V voltage

Battery voltage - drive parts voltage of less than 0.2 V?
1. Main switch OFF
2. Removed the injector, fuel pump, roll over sensor, ignition coil coupler
3. Measurement of the voltage between the couplers and ground of the voltage difference
4. Confirmed voltage difference and battery voltage of 0.2 V gap within?

ECU 5V voltage - sensor voltage of less than 0.2 V?
1. Main switch OFF
2. Use probe inserted throttle sensor, engine temperature sensor, the T-MAP sensor power connector
3. Main switch ON
4. Use voltage meter measurement of the sensor connector voltage
5. Voltage standard value: 5.0 ±0.1V

Battery voltage - fuel pump voltage of less than 0.2 V?
1. Main switch OFF
2. Removed fuel pump power coupler
3. Potential probe then pumped two-pin connector
4. Main switch ON
5. Pumped in three second record supply voltage values
6. Confirmed pump and battery supply voltage differential pressure within the 0.2 V voltage

End

Check light extinguished after 2 seconds

OK → NG

1. Line anomaly?
2. Uneven electrical storage battery?
3. Short circuit leakage?

1. Line anomaly?

OK → NG

1. Line anomaly?
2. ECU anomaly?

End
Can not Start the engine or difficult to start inspection

1. Difficulties or can not start engine

 Check light extinguished after engine started

 OK

 NG

1. Inspection process in accordance with circuit inspection

 1. Use diagnosis tool to view ECU fault content
 2. In accordance with troubleshooting procedures on troubleshooting

 Display warning lights Fault Code?

 OK

 NG

 1. Fuel tank inadequate?
 2. Fuel injector pressure less than 294 +/- 6 kPa?
 3. Pipeline fuel spills?
 4. Pressure Regulating Valve anomaly?
 5. Fuel pump pipe leakage?
 6. Fuel pump anomaly?
 7. Fuel injector anomaly?

 Battery & ECU voltage of less than 0.2 V?

 OK

 NG

 1. Spark plug there sparks?
 2. Spark plug humid?
 3. Spark plug cover loose?
 4. Crankshaft position sensor short circuit
 5. The high voltage power lines loose?
 6. ECU anomaly?

 Circuit anomaly?

 OK

 NG

 Engine anomaly?

 OK

 NG

 1. Without valve clearance?
 2. Valve timing, is not correct?
 3. Valve jam?
 4. Cylinder and piston ring wear?
 5. Throttle adjustment screw adjustment of the air improper?

 End
Idle flameout diagnosis

Idle flameout

1. Link diagnosis tool to view EFI fault code.
2. In accordance with troubleshooting procedures on troubleshooting.

Gasoline whether enough?

Whether loose battery connector?

Throttle line is not too jammed to revert to full closure?

Throttle body whether coated with serious oil?

Idle Air controller actuation whether or failure?

EFI system more relevant institutions, each recognized by the detection, still unable to rule out the idling flameout problem, it is recommended that engine checks whether there are other traditional institutions abnormal.
4-1. FUEL INJECTION SYSTEM

Integrated Fault Diagnosis Program

<table>
<thead>
<tr>
<th>Checking adjusting project</th>
<th>Detection of maintenance projects and steps</th>
<th>Fault status determination</th>
<th>Fault reasons</th>
<th>Parts specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Voltage</td>
<td>Use motor direct measurement battery voltage</td>
<td>Battery voltage is 10 V above?</td>
<td>Battery electricity</td>
<td>Diagnosis tool display voltage required to achieve more than 10 V</td>
</tr>
<tr>
<td></td>
<td>Use diagnosis tool detection battery voltage</td>
<td>Diagnosis tool show whether the voltage of 10 V above?</td>
<td>Battery connector loose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Harness circuit opening</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECU coupler not connected property</td>
<td></td>
</tr>
<tr>
<td>Diagnosis fault code inspection</td>
<td>Use of the diagnosis tool detection fault code</td>
<td>Diagnostic tool show whether or not a fault code?</td>
<td>TPS fault</td>
<td>The sensor detection methods and specifications, please refer to repair manual</td>
</tr>
<tr>
<td></td>
<td>Elimination of fault codes and then start engine</td>
<td>Fault Code cleared after show again?</td>
<td>ETS fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CPS fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MAP fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tilt fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECU fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fuel pump filter obstructive</td>
<td></td>
</tr>
<tr>
<td>Fuel quantity and fuel pressure</td>
<td>Removed the injector on the intake manifold but not removal of harness coupler (injector and cap tightly by hands, fuel spills should not be the case)</td>
<td>Injector whether injection?</td>
<td>Less than fuel tank</td>
<td>Pressure fuel specifications:</td>
</tr>
<tr>
<td></td>
<td>Start the engine</td>
<td>Injector spray angle is normal?</td>
<td>Injector fault</td>
<td>Open the main switch ten seconds after but not start engine more than 250 kPa</td>
</tr>
<tr>
<td></td>
<td>Examine whether injector fuel injection</td>
<td>Fuel pressure enough?</td>
<td>Fuel pump relay fault</td>
<td>Idle: 294±4.6 kPa</td>
</tr>
<tr>
<td></td>
<td>Between the tank and injector, installation the pressure gauge</td>
<td></td>
<td>Fuel pump fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check fuel pressure adequacy</td>
<td></td>
<td>ECU fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fuel pump filter obstructive</td>
<td></td>
</tr>
<tr>
<td>Ignition situation</td>
<td>Removed the spark plug from the cylinder head, but then power lines still ring</td>
<td>Examine whether the spark plug ignition?</td>
<td>Spark plug fault</td>
<td>Spark plug specifications:</td>
</tr>
<tr>
<td></td>
<td>Start the engine</td>
<td>Check spark plug sparks strength is normal?</td>
<td>Roll over sensor fault</td>
<td>NGK-CR7E</td>
</tr>
<tr>
<td></td>
<td>Check spark plug sparks</td>
<td></td>
<td>ECU fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ignition coil fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crankshaft position sensor fault</td>
<td></td>
</tr>
<tr>
<td>Engine Vacuum</td>
<td>Use diagnosis tool to detect of the manifold pressure</td>
<td>Diagnosis tool manifold pressure for compliance with specifications?</td>
<td>Valve clearance is not normal</td>
<td>Manifold pressure Specifications:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intake system leak</td>
<td>32~38 kPa</td>
</tr>
</tbody>
</table>

Normal starting
Can not starting or starting difficulties

Finish
In traditional engine overhaul way to maintenance
4-1. FUEL INJECTION SYSTEM

Fault Diagnosis Note
When the motorcycle injection system in the wrong signal, causing abnormal functioning of
the engine or can not start engine, MIL light at the dashboard will be lighting, to inform drivers
to carry out maintenance.

Overhaul, the diagnosis tool can be used for troubleshooting. If the fault has been ruled out or
repair after the MIL light will be extinguished, but ECU fault code will be recorded, so the need
to get rid of fault codes.

Diagnosis tool for overhaul
Diagnosis tool will connect to the motorcycle for coupler diagnosis, according to the use of
diagnostic tool testing methods, when belong fuel injection system fault or parts fault,
according to the diagnosis tool of the fault code display messages do describe parts of the
inspection testing maintenance and replacement parts. When after the maintenance, the need
to get rid of fault codes.
Fault Code And The Sensors Of The Table

<table>
<thead>
<tr>
<th>No.</th>
<th>Fault codes</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XXXXX</td>
<td>Un define</td>
</tr>
<tr>
<td>2</td>
<td>B2225</td>
<td>Tilt switch diagnosis (SCP)</td>
</tr>
<tr>
<td>3</td>
<td>B2226</td>
<td>Tilt switch diagnosis (SCG_OL)</td>
</tr>
<tr>
<td>4</td>
<td>P0000</td>
<td>No DTC</td>
</tr>
<tr>
<td>5</td>
<td>P0031</td>
<td>Sensor heater diagnosis #0 (SCG/OL)</td>
</tr>
<tr>
<td>6</td>
<td>P0032</td>
<td>Sensor heater diagnosis #0 (SCP)</td>
</tr>
<tr>
<td>7</td>
<td>P0051</td>
<td>Sensor heater diagnosis #1 (SCG/OL)</td>
</tr>
<tr>
<td>8</td>
<td>P0052</td>
<td>Sensor heater diagnosis #1 (SCP)</td>
</tr>
<tr>
<td>9</td>
<td>P0107</td>
<td>MAP sensor diagnosis (SCG_OL)</td>
</tr>
<tr>
<td>10</td>
<td>P0108</td>
<td>MAP sensor diagnosis (SCP)</td>
</tr>
<tr>
<td>11</td>
<td>P0112</td>
<td>Intake air temperature sensor diagnosis (SCG)</td>
</tr>
<tr>
<td>12</td>
<td>P0113</td>
<td>Intake air temperature sensor diagnosis (SCP_Ol)</td>
</tr>
<tr>
<td>13</td>
<td>P0114</td>
<td>Electrical intake air temperature intermittent diagnosis (failure)</td>
</tr>
<tr>
<td>14</td>
<td>P0117</td>
<td>Coolant Temperature Sensor (SCG)</td>
</tr>
<tr>
<td>15</td>
<td>P0118</td>
<td>Coolant Temperature Sensor (SCP_Ol)</td>
</tr>
<tr>
<td>16</td>
<td>P0119</td>
<td>Coolant temperature intermittent diagnosis (failure)</td>
</tr>
<tr>
<td>17</td>
<td>P0121</td>
<td>TPS position sensor adaptation diagnosis (out of range)</td>
</tr>
<tr>
<td>18</td>
<td>P0122</td>
<td>Throttle Position Sensor 1 (SCG_OL)</td>
</tr>
<tr>
<td>19</td>
<td>P0123</td>
<td>Throttle Position Sensor 1 (SCP)</td>
</tr>
<tr>
<td>20</td>
<td>P0131</td>
<td>Lambda sensor #0 diagnosis (SCG)</td>
</tr>
<tr>
<td>21</td>
<td>P0132</td>
<td>Lambda sensor #0 diagnosis (SCP)</td>
</tr>
<tr>
<td>22</td>
<td>P0133</td>
<td>Lambda sensor #0 diagnosis (OL)</td>
</tr>
<tr>
<td>23</td>
<td>P0151</td>
<td>Lambda sensor #1 diagnosis (SCG)</td>
</tr>
<tr>
<td>24</td>
<td>P0152</td>
<td>Lambda sensor #1 diagnosis (SCP)</td>
</tr>
<tr>
<td>25</td>
<td>P0153</td>
<td>Lambda sensor #1 diagnosis (OL)</td>
</tr>
<tr>
<td>26</td>
<td>P0171</td>
<td>Lambda control diagnosis #0 (too high)</td>
</tr>
<tr>
<td>27</td>
<td>P0172</td>
<td>Lambda control diagnosis #0 (too low)</td>
</tr>
<tr>
<td>28</td>
<td>P0174</td>
<td>Lambda control diagnosis #1 (too high)</td>
</tr>
<tr>
<td>29</td>
<td>P0175</td>
<td>Lambda control diagnosis #1 (too low)</td>
</tr>
<tr>
<td>30</td>
<td>P0217</td>
<td>Engine coolant over temperature protection diagnosis</td>
</tr>
<tr>
<td>31</td>
<td>P0219</td>
<td>Engine over speed detection diagnosis</td>
</tr>
<tr>
<td>32</td>
<td>P0231</td>
<td>Electric fuel pump diagnosis (SCG/OL)</td>
</tr>
<tr>
<td>33</td>
<td>P0232</td>
<td>Electric fuel pump diagnosis (SCP)</td>
</tr>
<tr>
<td>34</td>
<td>P0261</td>
<td>Injection valve diagnosis #0 (SCG/OL)</td>
</tr>
<tr>
<td>35</td>
<td>P0262</td>
<td>Injection valve diagnosis #0 (SCP)</td>
</tr>
<tr>
<td>36</td>
<td>P0264</td>
<td>Injection valve diagnosis #1 (SCG/OL)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>P0265</td>
<td>Injection valve diagnosis #1 (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0351</td>
<td>Ignition diagnosis #0 (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0352</td>
<td>Ignition diagnosis #1 (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0370</td>
<td>Loss of synchronization diagnosis</td>
<td></td>
</tr>
<tr>
<td>P0371</td>
<td>Crankshaft sensor diagnosis</td>
<td></td>
</tr>
<tr>
<td>P0373</td>
<td>Crankshaft sensor diagnosis</td>
<td></td>
</tr>
<tr>
<td>P0462</td>
<td>FUEL sensor diagnosis (SCG)</td>
<td></td>
</tr>
<tr>
<td>P0463</td>
<td>FUEL sensor diagnosis (SCP_Ol)</td>
<td></td>
</tr>
<tr>
<td>P0484</td>
<td>Cooling fan diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0485</td>
<td>Cooling fan diagnosis (SCG/OL)</td>
<td></td>
</tr>
<tr>
<td>P0530</td>
<td>Light relay diagnosis</td>
<td></td>
</tr>
<tr>
<td>P0560</td>
<td>Battery voltage diagnosis (too low)_VBR</td>
<td></td>
</tr>
<tr>
<td>P0561</td>
<td>Battery voltage diagnosis (too high)_VBR</td>
<td></td>
</tr>
<tr>
<td>P0562</td>
<td>Battery voltage diagnosis (too low)_VBK</td>
<td></td>
</tr>
<tr>
<td>P0563</td>
<td>Battery voltage diagnosis (too high)_VBK</td>
<td></td>
</tr>
<tr>
<td>P0608</td>
<td>Reference voltage diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0609</td>
<td>Reference voltage diagnosis (SCG_Ol)</td>
<td></td>
</tr>
<tr>
<td>P0615</td>
<td>Starter 1 diagnosis (OL)</td>
<td></td>
</tr>
<tr>
<td>P0616</td>
<td>Starter 1 diagnosis (SCG)</td>
<td></td>
</tr>
<tr>
<td>P0617</td>
<td>Starter 1 diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>P0630</td>
<td>VIN coherence</td>
<td></td>
</tr>
<tr>
<td>P0651</td>
<td>MIL diagnosis (SCG/OL)</td>
<td></td>
</tr>
<tr>
<td>P0652</td>
<td>MIL diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>P1352</td>
<td>Ignition diagnosis #0 (SCG_Ol)</td>
<td></td>
</tr>
<tr>
<td>P1353</td>
<td>Ignition diagnosis #1 (SCG_Ol)</td>
<td></td>
</tr>
<tr>
<td>P1508</td>
<td>Stepper motor diagnosis (SCG_Ol)</td>
<td></td>
</tr>
<tr>
<td>P1509</td>
<td>Stepper motor diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>P1615</td>
<td>Starter 2 diagnosis (OL)</td>
<td></td>
</tr>
<tr>
<td>P1616</td>
<td>Starter 2 diagnosis (SCG)</td>
<td></td>
</tr>
<tr>
<td>P1617</td>
<td>Starter 2 diagnosis (SCP)</td>
<td></td>
</tr>
<tr>
<td>U1600</td>
<td>IMMO sensor diagnosis (exist)</td>
<td></td>
</tr>
<tr>
<td>U1601</td>
<td>BUS error handling (OFF)</td>
<td></td>
</tr>
<tr>
<td>U1602</td>
<td>Frame 20 diagnosis</td>
<td></td>
</tr>
<tr>
<td>U1603</td>
<td>IMMO sensor diagnosis (aerial)</td>
<td></td>
</tr>
<tr>
<td>U1604</td>
<td>IMMO sensor diagnosis (unknown)</td>
<td></td>
</tr>
</tbody>
</table>
Use diagnosis tool

Note:
- When problems arise, can be used for diagnosis tool of the fault is detected, and exclusion.
- In addition to testing, troubleshooting, another of the operation can be carried out data analysis-type monitor.

Method of Use:
1. Connected to the diagnostic connector for diagnosis tool.
 NACS→TGB interface→Transfer Cable→TGB 3 pin/6 pin Diagnosis Cable→Vehicle.
2. When the IG of the motorcycle is on, the system starts to run, entering into boot screen.
3. Key ON and the diagnosis display screen appeared the words connection.
4. Press the “ENTER” button and the system will identify the vehicle model automatically and display the vehicle info on the screen, as following picture

<table>
<thead>
<tr>
<th>Vehicle Model Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle model</td>
</tr>
<tr>
<td>M3C</td>
</tr>
<tr>
<td>Calibration data</td>
</tr>
<tr>
<td>FBG</td>
</tr>
</tbody>
</table>
5. Press “ENTER” button again for more detailed vehicle information. Press ▲▼ button to view all information.
2. Diagnostic Trouble Code
Move the cursor to “Diagnostic Trouble Code” and press ENTER to see the content.

2-1. Current
“Current” is for the Diagnostic Trouble Code occurred at the time

2-2. History
“History” is for Diagnostic Trouble Code occurred in the past.

Move the cursor to “Current” and press “ENTER” to continue
After entering the page, press ▲▼ to view all the Diagnostic Trouble Code.

After viewing the Diagnostic Trouble Code, press ESC to return to the previous page.
After entering the page, press ▲▼ to view all the Diagnostic Trouble Code occurred in the past. After viewing the Diagnostic Trouble Code, press ESC to return to the previous page.

※ After viewing the content of “Current” or “History” Diagnostic Trouble Code, press ESC to return to the previous page, you will see two more items on the screen - “Freeze Data” and “Erase DTC”.

“Freeze Data” is the data recorded when FIRST Diagnostic Trouble Code occurred, and one time only record one Diagnostic Trouble Code freeze data, it's for saving the engine dynamic data for further analysis.

“Erase DTC” is the function to erase all Diagnostic Trouble Code in both “Current” and “History”.

2-3. Freeze Data
This is the content you will see when entering into the “Freeze Data”. Press ▲▼ to view the Freeze Data.

★ NOTE: not all ECU support this function.
Numerical analysis of images (1 / 3), the waveform can be displayed as shown in the following items:
4-1. FUEL INJECTION SYSTEM

Freeze Data (01/03)
Number of data
DTC
Engine speed
Throttle valve volt
Intake pressure MAP

Freeze Data (02/03)
Engine temp
Lambda Control volt
Battery volt
Atmospheric pressure
Intake air temp

2-4. Erase DTC
Move the cursor to “Erase DTC” item and press ENTER to ERASE ALL DIAGNOSTIC TROUBLE CODE DIRECTLY!

When you see the following picture on the screen, the Diagnostic Trouble Code erasure is completed. Press ESC button back to the main menu.
3. Live Data
Back to the main menu, move the cursor to “Live Data” and press ENTER to view the content.

Press ▲▼ button to view all Live Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine speed</td>
<td>0</td>
<td>rpm</td>
</tr>
<tr>
<td>Injection Timing</td>
<td>0.00</td>
<td>ms</td>
</tr>
<tr>
<td>Ignition angle</td>
<td>-0.5</td>
<td>deg</td>
</tr>
<tr>
<td>Battery volt</td>
<td>12.1</td>
<td>v</td>
</tr>
<tr>
<td>Trouble code quantity</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

4. Actuator
Move the cursor to “Activator” and press ENTER to see the content (To perform this function, IG must be ON and engine stop running.)
This is the page after entering the “Activator” function

Take one activation function for example: move the cursor to “Ignition coil” item and press ENTER to continue.
When pressing “Actuating ▲ button, the test is activated and the “Value” column shows Open.
When pressing “Stop Actuating ▼ button, the test is de-activated and the “Value” column shows close.

5. Special Function
Move the cursor to “Special Function” and press ENTER to view the content
There are two items under “Special Function”: “Reset TPS” and “Reset Adaptive”.

Move the cursor to “Reset TPS” and press ENTER. Then you will see the following picture, which means the RESET is completed. Press ESC button to return to the previous page.
Troubleshooting Table

<table>
<thead>
<tr>
<th>Abnormal phenomena</th>
<th>Test Items</th>
<th>Comprehensive Testing Program</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power voltage</td>
<td>Fuel press.</td>
<td>Ignition state</td>
</tr>
<tr>
<td>Start state</td>
<td>Can't start</td>
<td>✶ ✶ ✶ ✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>Difficult to start</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td>Idle state</td>
<td>Without Idle</td>
<td>✶ ✶ ✶ ✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>Idle not smooth</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>RPM NG</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>CO NG</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Not smooth</td>
<td>✶ ✶ ✶ ✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>Inability and slow</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td>Flameout</td>
<td>Idle flameout</td>
<td>✶</td>
<td>✶</td>
</tr>
<tr>
<td></td>
<td>Acceleration flameout</td>
<td>✶</td>
<td>✶</td>
</tr>
</tbody>
</table>

Related spare parts

<table>
<thead>
<tr>
<th>Roll over sensor</th>
<th>Fuel pump</th>
<th>Ignition coil</th>
<th>Intake pipe</th>
<th>Injector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power relay</td>
<td>Fuel pump</td>
<td>Spark plug</td>
<td>Cylinder head</td>
<td>Fuel pump</td>
</tr>
<tr>
<td>Fuel pump relay</td>
<td>Inlet pressure sensor</td>
<td>Fuel pump pressure adjustment valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main switch</td>
<td>Fuel filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Integrated test motorcycle, according to the "Comprehensive Maintenance list" implementation.
2. Spare parts, according to the "EFI System components description" implementation.
Comprehensive Maintenance List

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Project</th>
<th>Testing Procedures</th>
<th>Test items</th>
<th>Determine benchmarks</th>
<th>Fault reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power and voltage</td>
<td>Use meter direct measurement battery voltage</td>
<td>Battery</td>
<td>Battery voltage = 10 V above</td>
<td>Battery electricity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use diagnosis tool detection of battery voltage</td>
<td></td>
<td></td>
<td>Battery connector loose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Harness circuit opening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECU coupler not connected properly</td>
</tr>
<tr>
<td>2</td>
<td>Fuel pressure</td>
<td>Use fuel pressure gauge connected in series between the injector and the pressure regulating valve</td>
<td></td>
<td>Open main switch but not to start the engine of pressure</td>
<td>Fuel not enough</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main switch ON but not start engine</td>
<td></td>
<td>Pressure in Idle</td>
<td>Fuel pump relay fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check fuel pressure</td>
<td></td>
<td>Rotating throttle, situation of pressure changes</td>
<td>Fuel pump fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start engine (Idle)</td>
<td></td>
<td></td>
<td>Injector fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check change of fuel pressure</td>
<td></td>
<td></td>
<td>ECU fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Throttle several rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check to the change of fuel pressure again</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ignition state</td>
<td>The spark plug removed from the cylinder head but the power lines still ring</td>
<td>Spark plug</td>
<td>Specifications: NGK-CR7H</td>
<td>Spark plug fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start engines or use for the diagnosis tool of output view spark plug ignition conditions</td>
<td></td>
<td>Ignition conditions: With traditional engines found ways</td>
<td>Roll over sensor fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECU No. 12 pin fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignition coil fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankshaft position sensor fault</td>
</tr>
<tr>
<td>4</td>
<td>Engine vacuum</td>
<td>Diagnosis tool to detect the use of</td>
<td>Manifold pressure of diagnosis tool</td>
<td>Manifold pressure = 32~38 kPa</td>
<td>Valve clearance abnormal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intake system leak</td>
</tr>
<tr>
<td>5</td>
<td>Injection state</td>
<td>The injector removed from the throttle body but not dismantle pipeline</td>
<td></td>
<td>Not started, Injector not leaking fuel</td>
<td>Fuel pump relay fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main switch ON but not start engine</td>
<td></td>
<td>In started, the injection state must show fan shape</td>
<td>Fuel pump fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Investigation the injector it’s leaking fuel?</td>
<td></td>
<td></td>
<td>Injector fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start engines again or use for the diagnosis tool of output function</td>
<td></td>
<td></td>
<td>ECU fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check injector fuel injection and the injection situation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fault Code Detection</td>
<td>Use of diagnosis tool existing fault detection code or historical Fault Code</td>
<td>Diagnosis toll of the fault code is it can be eliminated</td>
<td>Without any residual Fault Code</td>
<td>Throttle position sensor fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eliminated of the implementation of fault codes, check can be eliminated</td>
<td></td>
<td></td>
<td>Engine temperature sensor fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start engine again</td>
<td></td>
<td></td>
<td>Intake temperature sensor fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check fault is it happen again</td>
<td></td>
<td></td>
<td>Manifold pressure sensor fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPS fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECU fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tilt sensor fault</td>
</tr>
</tbody>
</table>

Notes:
1. Fuel pressure gauge connected between the fuel tank and injector, open the main switch to repeatedly shut down, fuel system makes pressure stability.
2. Injector and injector cap tightly by hands, fuel spills should not be the case.